

# Recommender Metrics Framework

Measuring the success of a Recommender System

Nikolaos Triantafyllis (GRNET)

Kostas Kagkelidis, Nikolaos Triantafyllis, Themis Zamani, Kostas Koumantaros {kaggis, ntriantafyl, themis, kkoum}@admin.grnet.gr National Infrastructures for Research and Technology (GRNET)



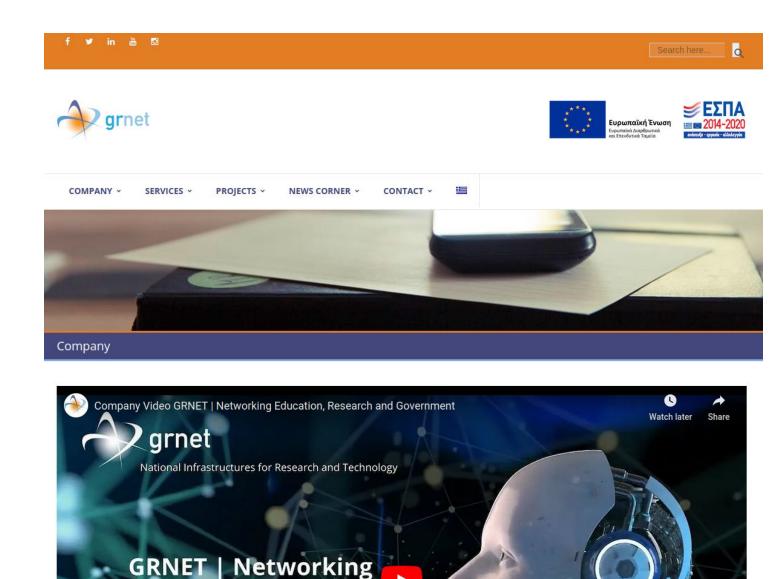
The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement 101017536





### Who we are?

- GRNET S.A. National Infrastructures for Research and Technology, is one of the largest public sector technology companies in Greece.
- It provides networking, cloud computing, HPC, data management services and e-Infrastructures and services to academic and research institutions, to educational bodies at all levels, and to all agencies of the public sector.
- <u>https://grnet.gr</u>



eoscfuture.eu 🕥 @EOSCFuture

**EOSC** Future

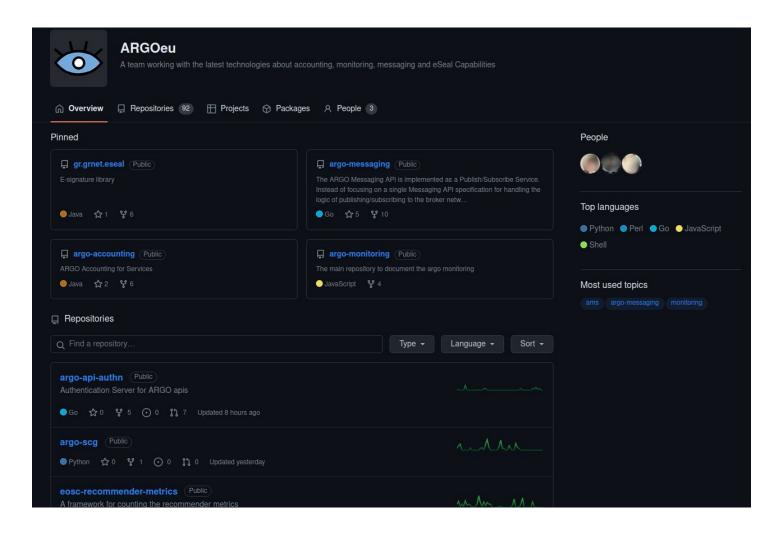
EOSCfuture

oarch Education

### Who we are?

- The European Infrastructures and Projects Directorate.
- Among others, it develops software solutions in various research projects across EU and Greece.
- One of the subteams of the Directorate that lies in GitHub Organizations: <u>https://github.com/ARGOeu</u>
- Recommender Metrics
  Framework (RMF) is developed
  by GRNET and used as an

open-source solution in the EOSC-Future project.





## What are we going to talk about?

A Recommender System's Metrics Framework that can produce measurable results for a Recommender System's evaluation.











### Where is it used?

monitor and report diagnostic metrics for the EOSC Marketplace То Recommender Service.

**Recommender Service** 

- **Owners** •
- Developers •
- Engineers



Service using the RS **Marketing Team** 









Will explain in a few minutes



### What is a Recommender System (RS)?

- Offers <u>personalized</u> suggestions to users.
- Recommendations are based on user preferences, behaviors, <u>patterns</u>.
- <u>Recommendations</u> can include products, content, services, or connections.
- Aims to enhance <u>user experience</u>.
- <u>Applications</u> include e-commerce, content streaming, and social media.
- Addresses the information <u>overload</u> problem in the digital age.

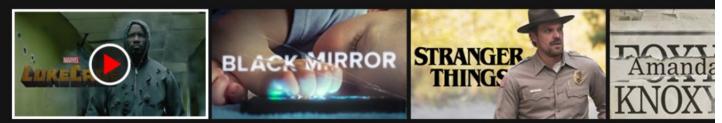
Because you watched shows about Anti-Heroes and Moral Ambiguity >



Because you watched shows with Sharp Humor and Strong Female Leads >



Because you watched shows about Dangerous Worlds and Complex Consequences >



Because you watched shows about Edgy Coming of Age Tales >

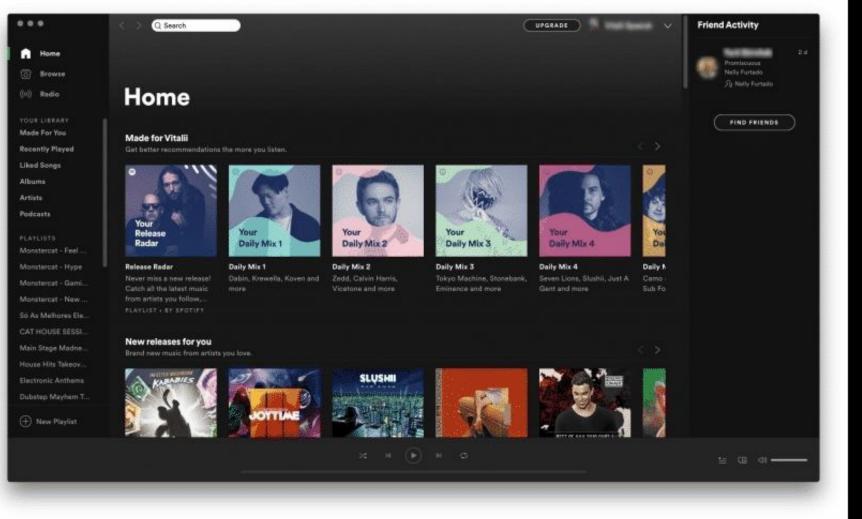


eoscfuture.eu 🕥 @EOSCFuture

**EOSC** Future

EOSCfuture

### Mor<u>e</u>...









### More...

#### YouTube

iPad 奈



シャドウバースリスナー対戦会 身体はぜい肉でできている。



今天玩我想玩的 想對我說甚麼也 可以歐付寶斗內唷

Roger Stone Goes to Court...

15:14



144Hz vs 240Hz - Can you see the difference? ft. ASUS PG258Q Gaming Monitor NCIX Tech Tips · 2.9M views · 1 year ago

100 %

7:23

🔊 🖬 Q





FUNNY GAMING TV | Liêu hôm 傳說對決| TXO Genji | 發車發車 nay có thể đạt được c<u>ôt mốc</u> 來發車 30,000 View không chứ hả ? TXO Genji · 1.1K watching FUNNY GAMING TV · 16K watching



Extra History S19 · E4 D-Day - The Atlantic Wall - Extr... Extra Credits · 1.9M views · 1 year ago Conferencia de prensa matutina

desde Palacio Nacional Andrés Manuel López Obrador



Why People Still Fall for the Nigerian Email Scam 1 year ago



6

Bernie Responds to the State of the Union Senator Bernie Sanders · 469K views

Home



World War Two Begins - WW2 -002 September 8 1939 World War Two · 288K views

Ē



NEW Chiller Grenades // NIGHT TIME // 3,000+ Wins // 67,000+ Elims // Fortnite LIVE... Avxry · 3.9K watching

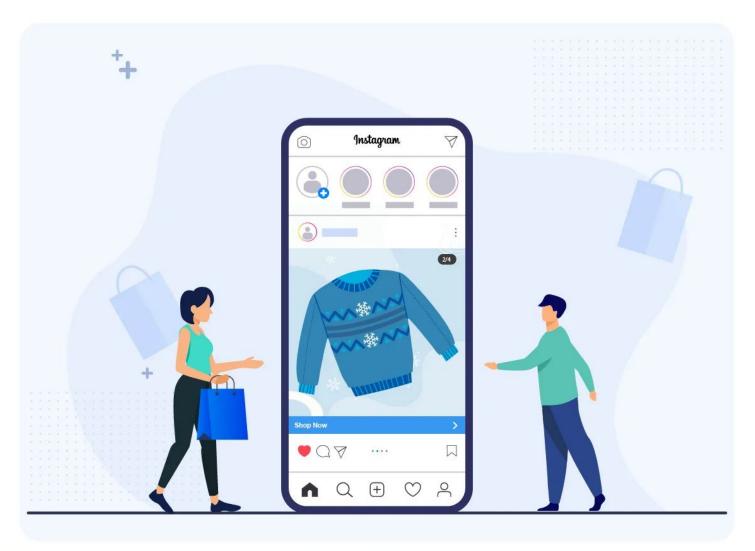
























### - How "good" recommendations are?

### What is "good"?

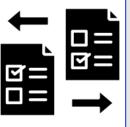




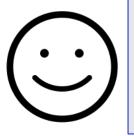
## Why do we need RS metrics?



**Evaluation:** They assess RS performance and effectiveness.



Comparison: They help compare different systems or variations.



**User Satisfaction:** They measure user engagement and they can help in building user trust.



Fairness: They can be used to mitigate biases in recommendations, promoting fairness and inclusivity.



**Optimization**: They quide improvements and fine-tuning in algorithms and parameters, whereas they support continuous system improvement.



Business Impact: They can be tied to financial outcomes (KPIs).











### Science in the background...

٠

| Articles            | About 6,550,000 results (0.13 sec)                                                                 |                                                    |                     |  |
|---------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------|--|
| Any time            | [нтмь] How good your recommender s                                                                 | system is? A survey on evaluations in              | [HTML] springer.com |  |
| Since 2023          | recommendation                                                                                     | · · · · · · · · · · · · · · · · · · ·              | []                  |  |
| Since 2022          | T Silveira, <u>M Zhang</u> , X Lin, Y Liu, S Ma - Internati                                        | onal Journal of Machine, 2019 - Springer           |                     |  |
| Since 2019          | Retention is also a useful metric used in online                                                   | evaluation of recommender systems [32]             |                     |  |
| Custom range        | user utility and for business. Retention measures                                                  | the impact of the recommender systems in           |                     |  |
|                     | ☆ Save 功 Cite Cited by 217 Related article                                                         | es All 3 versions                                  |                     |  |
| Sort by relevance   |                                                                                                    |                                                    |                     |  |
| Sort by date        | [нтмL] SemCiR: A citation recommend<br>distance measure                                            | lation system based on a novel semantic            | [HTML] emerald.com  |  |
| Any type            | F Zarrinkalam, M Kahani - Program, 2013 - emera                                                    | ald.com                                            |                     |  |
| Review articles     | The purpose of this paper is to propose a nove<br>a text and recommends publications that should b |                                                    |                     |  |
| include patents     | ☆ Save 59 Cite Cited by 55 Related articles                                                        | All 9 versions                                     |                     |  |
| ✓ include citations |                                                                                                    |                                                    |                     |  |
|                     | Evaluating recommendation system                                                                   | S                                                  | [PDF] psu.edu       |  |
| Create alert        | <u>G Shani, A Gunawardana</u> - Recommender syste                                                  | ems handbook, 2011 - Springer                      |                     |  |
|                     | Thus we cannot directly measure the recommender's influence on user behavior in this               |                                                    |                     |  |
|                     | setting. Therefore, the goal of the offline experiments is to filter out inappropriate approaches, |                                                    |                     |  |
|                     | ☆ Save 切 Cite Cited by 1881 Related artic                                                          | les All 25 versions                                |                     |  |
|                     | Social network based recommendati                                                                  | on systems: A short survey                         | [PDF] ieee.org      |  |
|                     | S Chen, S Owusu, L Zhou - 2013 international conference on, 2013 - ieeexplore.ieee.org             |                                                    |                     |  |
|                     | to measure the performances of a recommendation system. We concluded that the                      |                                                    |                     |  |
|                     | recommendation system different measures                                                           |                                                    |                     |  |
|                     | ☆ Save 99 Cite Cited by 55 Related articles                                                        | All 5 versions                                     |                     |  |
|                     | Related searches                                                                                   |                                                    |                     |  |
|                     | similarity measure recommendation system                                                           | recommendation systems for software<br>engineering |                     |  |
|                     | systematic review recommender systems                                                              | business opportunities<br>recommendation systems   |                     |  |
|                     | collaborative filtering recommender                                                                | good recommendations recommender                   |                     |  |

systems

Dimensions and metrics for evaluating recommendation systems

systems

systems

social network based recommender

[PDF] github.io





accuracy metrics recommender systems



### How to measure success?



**Statistics:** quantifies the <u>occurrences</u> of various data entities, such as user interactions, item popularity, or recommendation relevance scores.



**Metrics**: goes beyond simple **counts** and offer <u>sophisticated</u> characterizations of Recommender System's performance.



KPIs: Key Performance Indicators(KPIs)focusedbusiness-orientedmetrics, whichare aligned with the overarchinggoals of the organization.

Graphs: <u>visualizations</u> of statistics/metrics across time helping in tracking trends, and identifying seasonality.





### What is EOSC?

- EOSC stands for the "<u>European Open</u> <u>Science Cloud</u>".
- It is a European <u>initiative</u> aimed at creating a <u>unified</u>, open environment for researchers and scientists.
- Its objectives include enabling access, sharing, and reuse of data, as well as providing access to research services and resources.
- EOSC promotes open science principles, fostering transparency and accessibility in research.
- Collaboration among researchers from various disciplines and institutions is a central goal of EOSC.

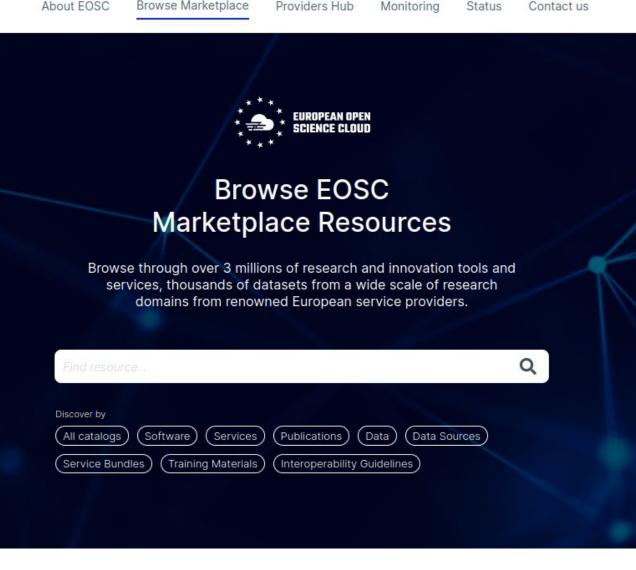
OOEOSC

eoscfuture.eu 🔰 @EOSCFuture 📊 EOSCfuture

EOSC Future

### What is EOSC Marketplace?

- The EOSC Marketplace is an <u>online</u> <u>platform</u> and ecosystem within EOSC: <u>https://marketplace.eosc-portal.eu/</u>
- It is designed to facilitate access to a wide range of digital resources, services, and data.
- It serves as a centralized hub for researchers and scientists in the EU research community.
- Researchers can use the marketplace to discover, access, and use resources that support their research activities.
- Resources available through the marketplace include data repositories, software applications, computing and storage facilities, trainings, and various research services.







## What is Recommender Metrics Framework (RMF)?

- A <u>Python open-source software</u> that monitors, analyzes, and evaluates recommendation mechanisms.
- <u>Measures</u> the effectiveness of the EOSC Marketplace RS to enhance the user experience and improve AI algorithms.
- Incorporates diagnostic statistics, metrics and visualizations for deeper insights into model performance.
- Presents <u>reports</u> as a web service and visualizes statistics, metrics, and Key Performance Indicators (KPIs) through a RESTful API and UI dashboard.
- Quantitative evaluation is taking <u>into account</u> EOSC Marketplace resources, user actions, and recommendations.
- <u>Supports</u> real-time and offline data ingestion, multiple resource types, and various recommendation engines as sources.
- <u>Evolves</u> over time, adding features and utilities to promote the development of more reliable and high-quality RS designs.

eoscfuture.eu 🕥 @EOSCFuture

**EOSC** Future





#### IS CURRENTLY USED

Monitoring the EOSC Marketplace RS

- Monitors and reports diagnostic metrics for the EOSC Marketplace RS.
- Analyses user actions and recommendations.
- Provides Statistics, Metrics, KPIs, Graphs in a REST API and dashboard UI.
- Delivers comprehensive documentation.

#### **Evaluate a third-party RS**

- An analysis tool of the recommendation engine.
- Data preparation with the necessary input information.
- Tasks involve retrieving data from multiple sources, removing irrelevant data, correlating information, and generating statistical insights.





**CAN BE USED** 

#### **Statistics**

- Number of Users
- Number of Resources
- Number of Recommended items
- Number of User Actions by
  - Registered or
  - Anonymous users
- Total Views







#### **User Actions**

#### **Statistics**

- Number of Users
- Number of Resources
- Number of Recommended items
- Number of User Actions by
  - Registered or
  - Anonymous users
- Total Views

| User Actions 124813 |          |
|---------------------|----------|
| by Registered Users | 18272    |
|                     | (14.64%) |
| by anonymous Users  | 106541   |
|                     | (85.36)  |





#### **Metrics**

- Accuracy
- Catalog Coverage
- Diversity Gini Index
- Diversity Shannon Entropy
- Novelty
- User Coverage







#### **Metrics**

- Accuracy
- Catalog Coverage
- Diversity Gini Index
- Diversity Shannon Entropy
- Novelty
- User Coverage

Measures Recommendations' accuracy based on users' access to the services. A value of 1, indicates that the RS model got all the predictions right, and a value of o indicates that the RS model did not make a single correct prediction.



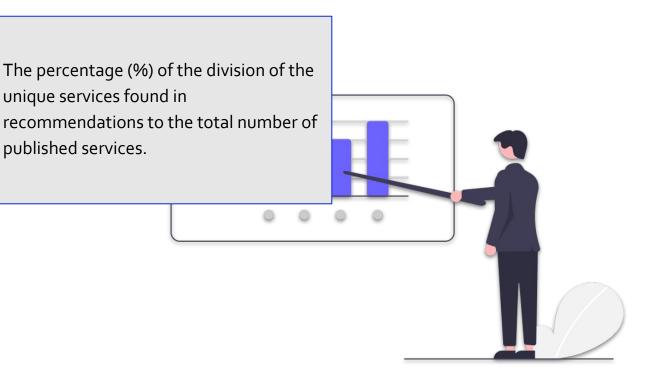


0

0

#### **Metrics**

- Accuracy
- Catalog Coverage
- Diversity Gini Index
- Diversity Shannon Entropy
- Novelty
- User Coverage







### **Metrics**

- Accuracy
- Catalog Coverage
- Diversity Gini Index
- Diversity Shannon Entropy
- Novelty
- User Coverage

Measures Recommendations' diversity. The index is o when all items are chosen equally often, and 1 when a single item is always chosen.







#### **Metrics**

- Accuracy
- Catalog Coverage
- Diversity Gini Index
- Diversity Shannon Entropy
- Novelty
- User Coverage

Measures Recommendations' diversity. The entropy is o when a single item is always chosen or recommended, and log n when n items are chosen or recommended equally often.







#### **Metrics**

- Accuracy
- Catalog Coverage
- Diversity Gini Index
- Diversity Shannon Entropy
- Novelty
- User Coverage

The novelty metric expresses the ability of the system to recommend items not generally seen before by the population of users.

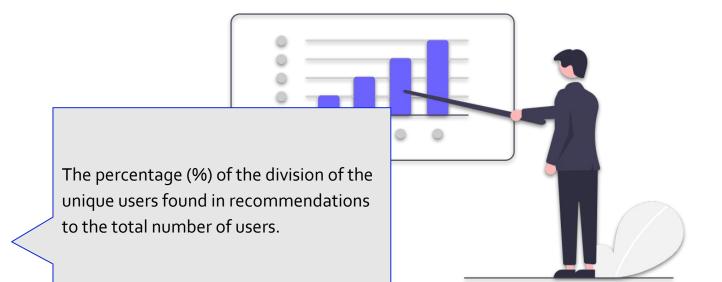






#### **Metrics**

- Accuracy
- Catalog Coverage
- Diversity Gini Index
- Diversity Shannon Entropy
- Novelty
- User Coverage

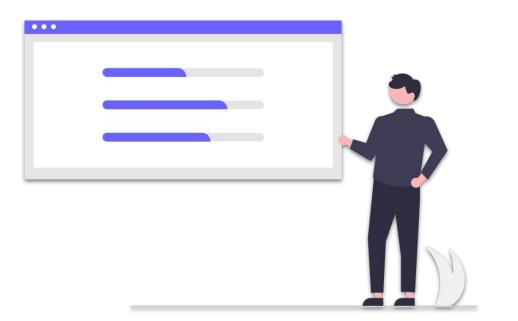






#### **KPIs**

- Click-Through Rate
- Hit-Rate
- Top 5 viewed Items
- Top 5 recommended Items
- Top 5 viewed categories
- Top 5 recommended categories
- Top 5 viewed scientific domains
- Top 5 recommended scientific domains







#### **KPIs**

- Click-Through Rate
- Hit-Rate
- Top 5 viewed Items
- Top 5 recommended Items
- Top 5 viewed categories
- Top 5 recommended categories
- Top 5 viewed scientific domains
- Top 5 recommended scientific domains

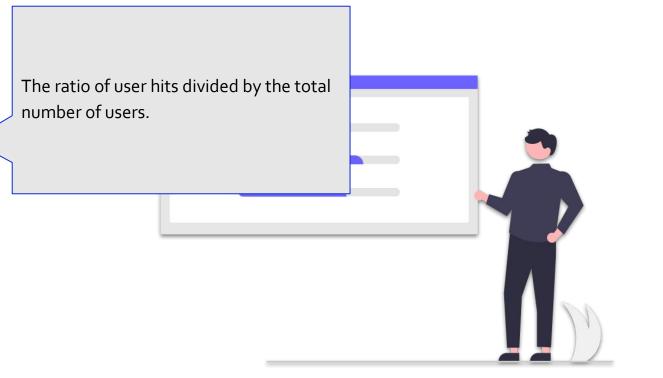
The number of user clicks through recommendations panels divided by the total times recommendation panels were presented to users.





#### **KPIs**

- Click-Through Rate
- Hit-Rate
- Top 5 viewed Items
- Top 5 recommended Items
- Top 5 viewed categories
- Top 5 recommended categories
- Top 5 viewed scientific domains
- Top 5 recommended scientific domains







#### KPIs

- Click-Through Rate
- Hit-Rate
- Top 5 viewed Items
- Top 5 recommended Items
- Top 5 viewed categories
- Top 5 recommended categories
- Top 5 viewed scientific domains
- Top 5 recommended scientific domains

The top 5 entities (items, categories, scientific domains) counts based on users actions (viewed) or recommendations (recommended).

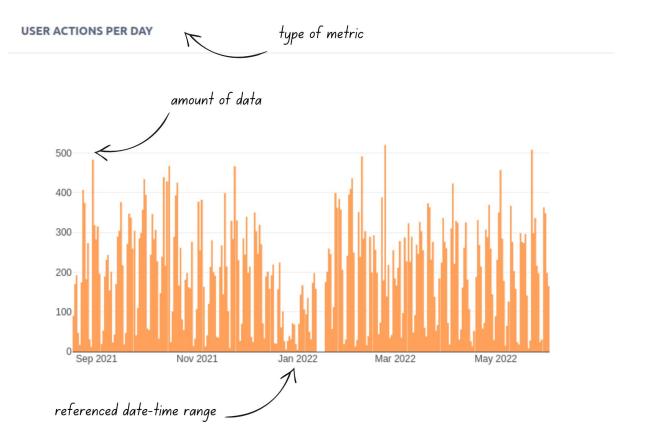
...





### Graphs

- User Actions per day
- Recommended Items per day
- User Actions per month
- Recommended Items per month





#### **Rest API**

- Statistics
- Metrics
- KPIs
- Graphs' Data

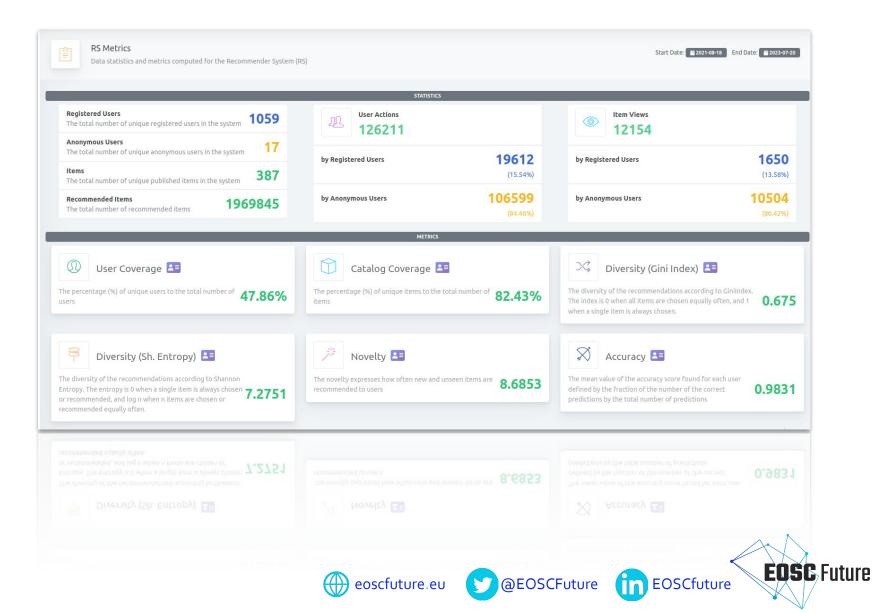
| <b>▼</b> 0: |                                                                                            |  |
|-------------|--------------------------------------------------------------------------------------------|--|
| name:       | "accuracy"                                                                                 |  |
| value:      | 0.9942                                                                                     |  |
| ▼ doc:      | "The mean value of the accuracy score found for each user defined by the fraction of       |  |
| - 1:        |                                                                                            |  |
| name:       | "catalog_coverage"                                                                         |  |
| value:      | 82.43                                                                                      |  |
| ▼ doc:      | "The percentage (%) of unique services to the total number of services"                    |  |
| - 2:        |                                                                                            |  |
| name:       | "click_through_rate"                                                                       |  |
| value:      | 0.03                                                                                       |  |
| ▼ doc:      | "The number of user clicks through recommendations panels divided by the total times       |  |
| - 3:        |                                                                                            |  |
| name:       | "diversity"                                                                                |  |
| value:      | 3.2668                                                                                     |  |
| ▼ doc:      | "The diversity of the recommendations according to Shannon Entropy. The entropy is ${f 0}$ |  |
| - 4:        |                                                                                            |  |
| name:       | "diversity_gini"                                                                           |  |
| value:      | 0.9718                                                                                     |  |
| ▼ doc:      | "The diversity of the recommendations according to GiniIndex. The index is $	heta$ when al |  |
| - 5:        |                                                                                            |  |
| name:       | "hit_rate"                                                                                 |  |
| value:      | 0.01275                                                                                    |  |
| ▼ doc:      | "The ratio of user hits divided by the total number of users (user hit: a user that        |  |
| - 6:        |                                                                                            |  |
| name:       | "novelty"                                                                                  |  |
| value:      | 8.0964                                                                                     |  |
| ▼ doc:      | "The novelty expresses how often new and unseen items are recommended to users"            |  |
| - 7.        |                                                                                            |  |





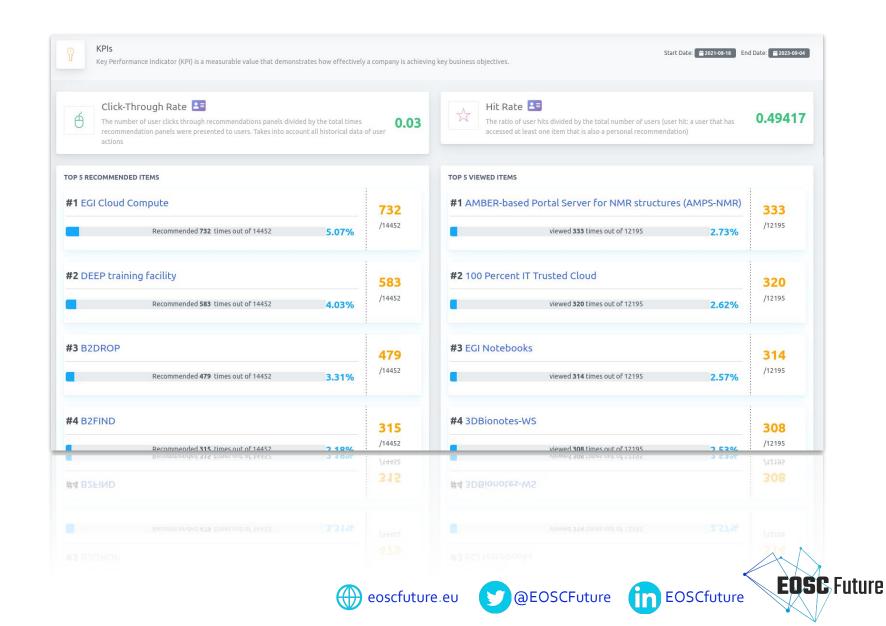
### **UI Dashboard**

- Statistics
- Metrics
- KPIs
- Graphs



#### **UI Dashboard**

- Statistics
- Metrics
- KPIs
- Graphs





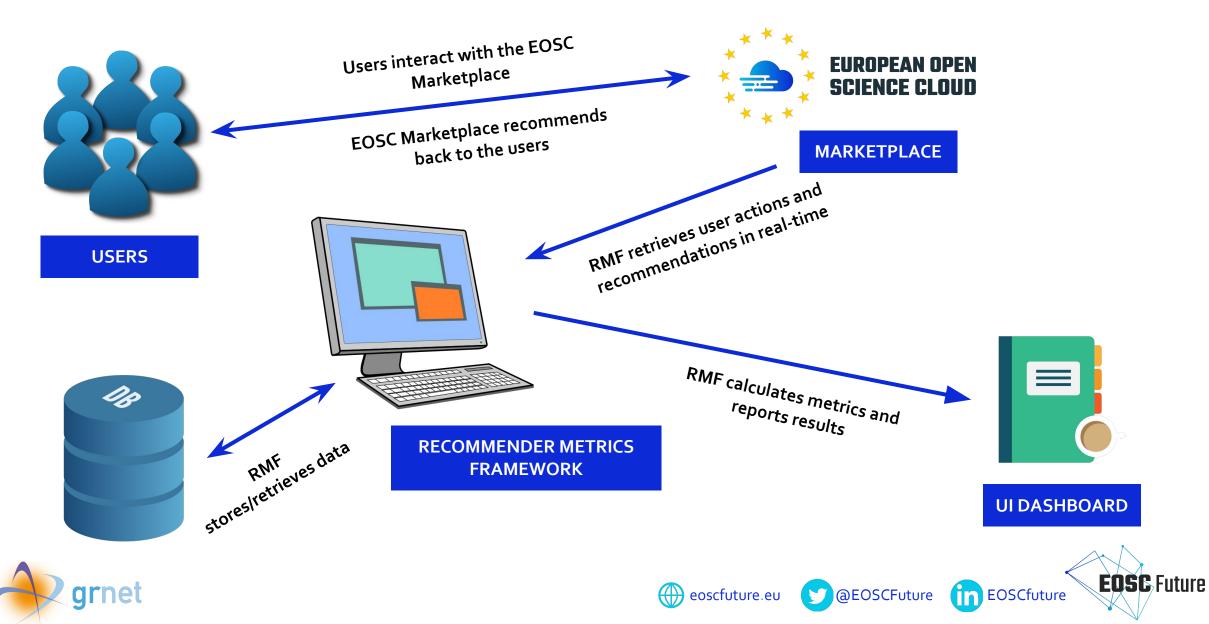
#### **UI Dashboard**

- Statistics
- Metrics
- KPIs
- Graphs





### **Process Flow**

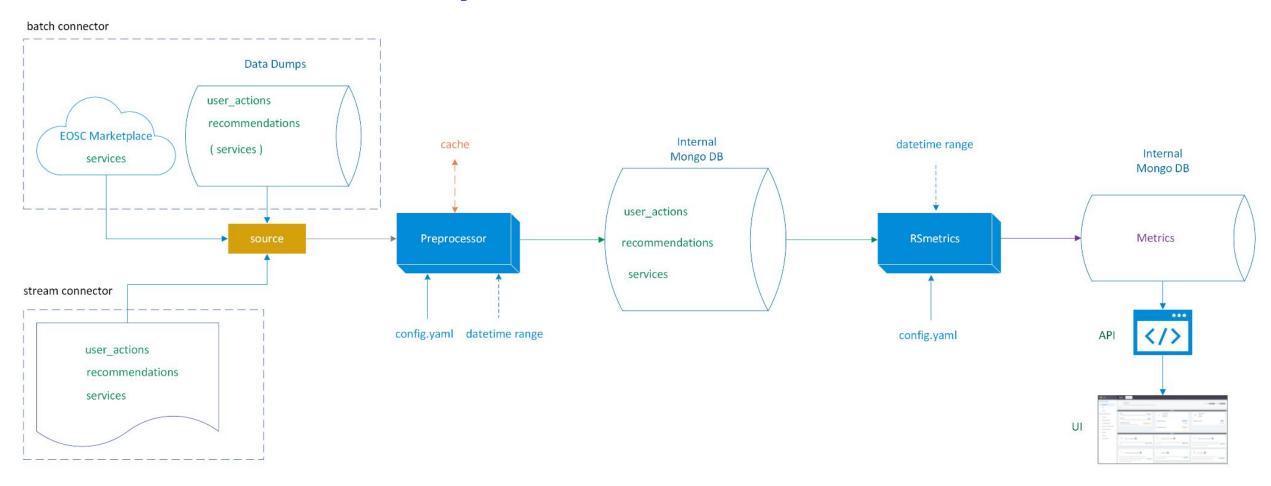




#### **All Units**



#### Framework's components





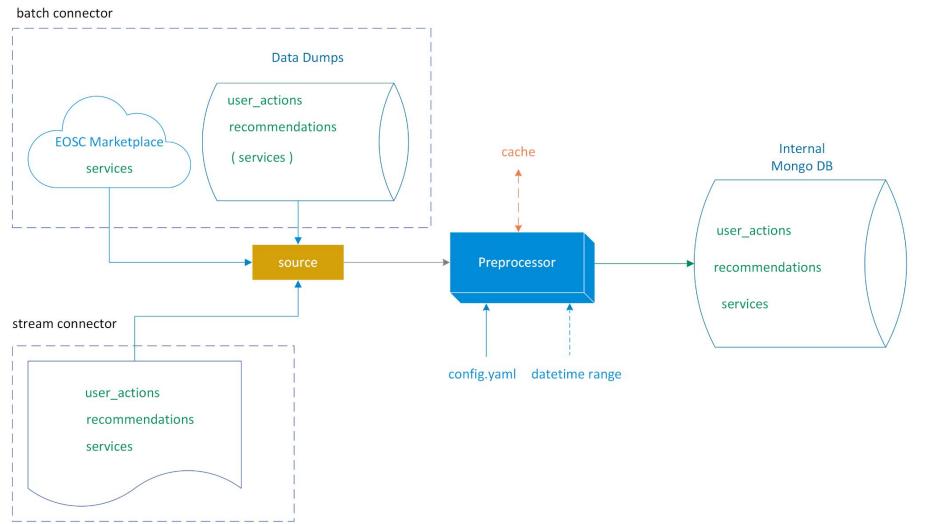




**Preprocessor Unit** 





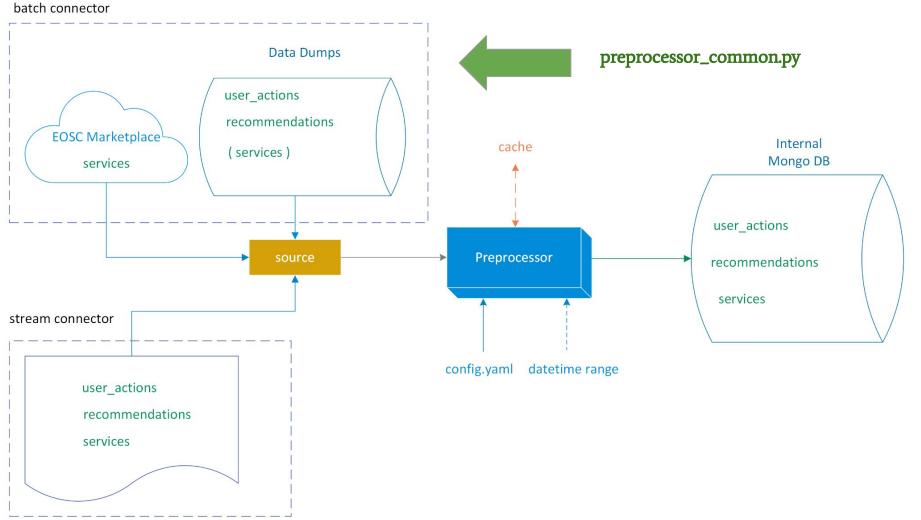






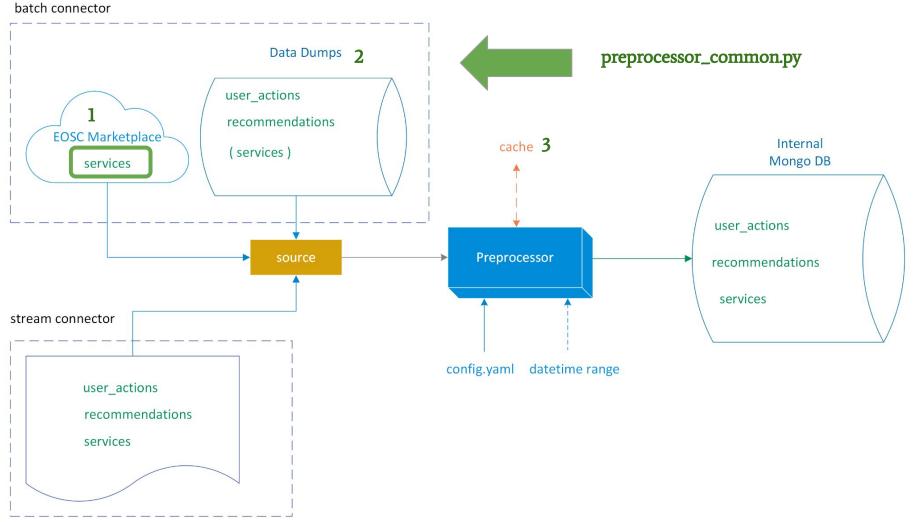










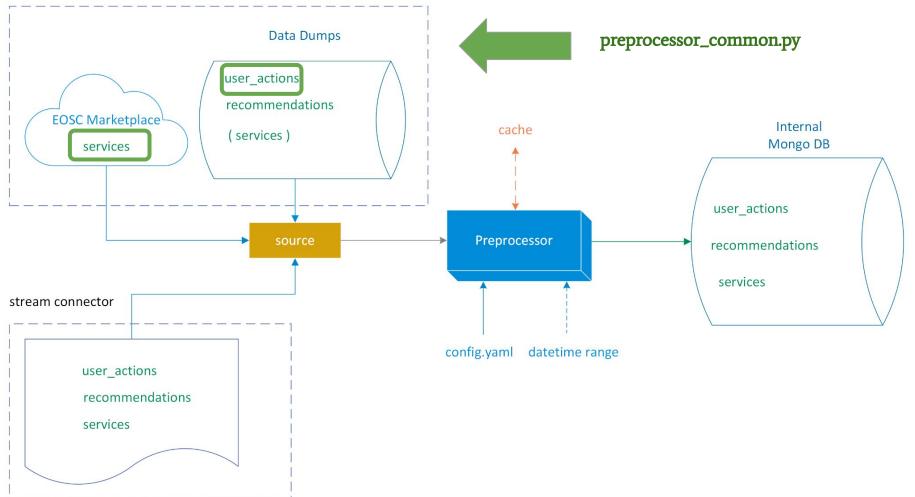


**EOSC** Future

eoscfuture.eu 🕥 @EOSCFuture in EOSCfuture



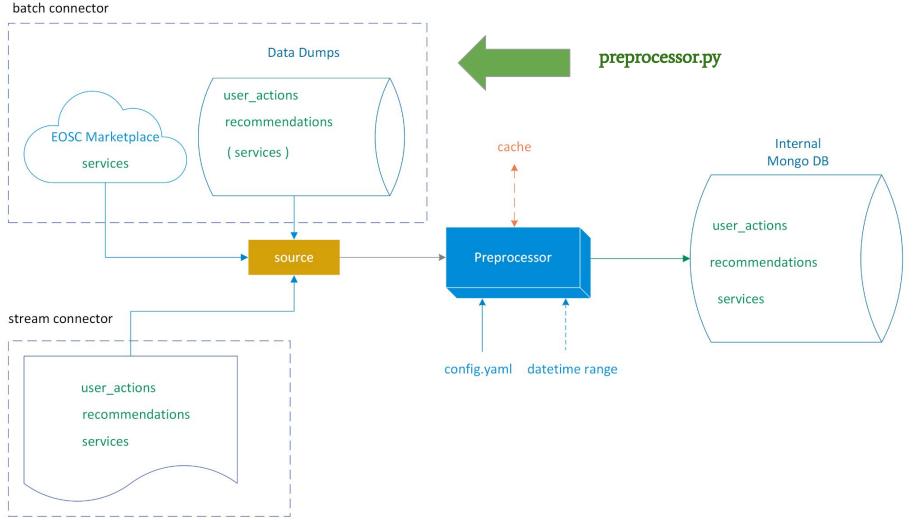
batch connector



**EOSC** Future

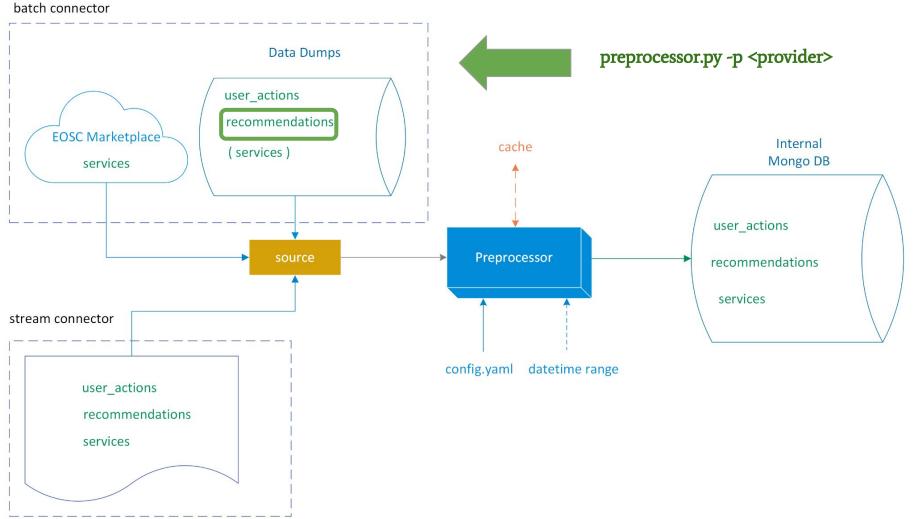
eoscfuture.eu 🕥 @EOSCFuture in EOSCfuture







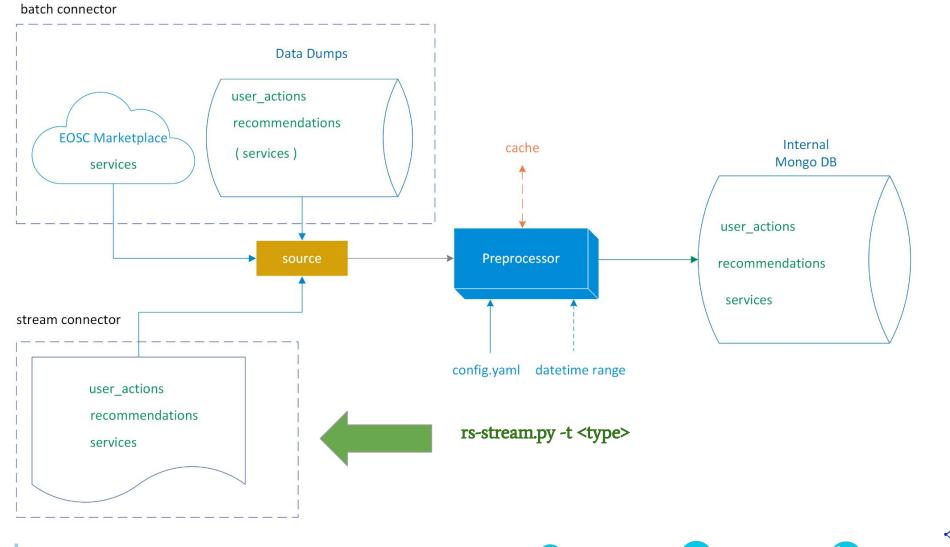












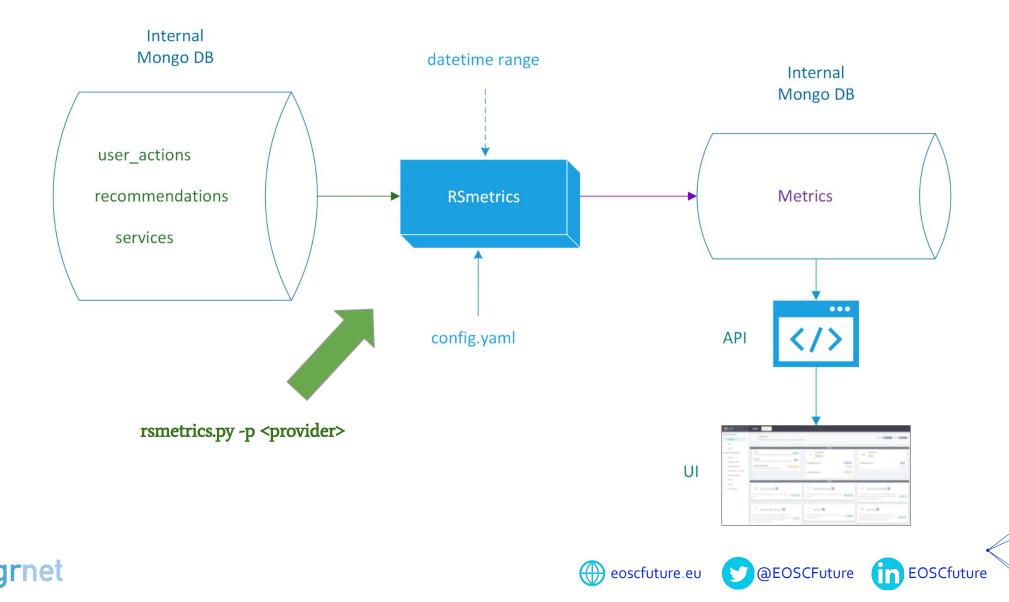


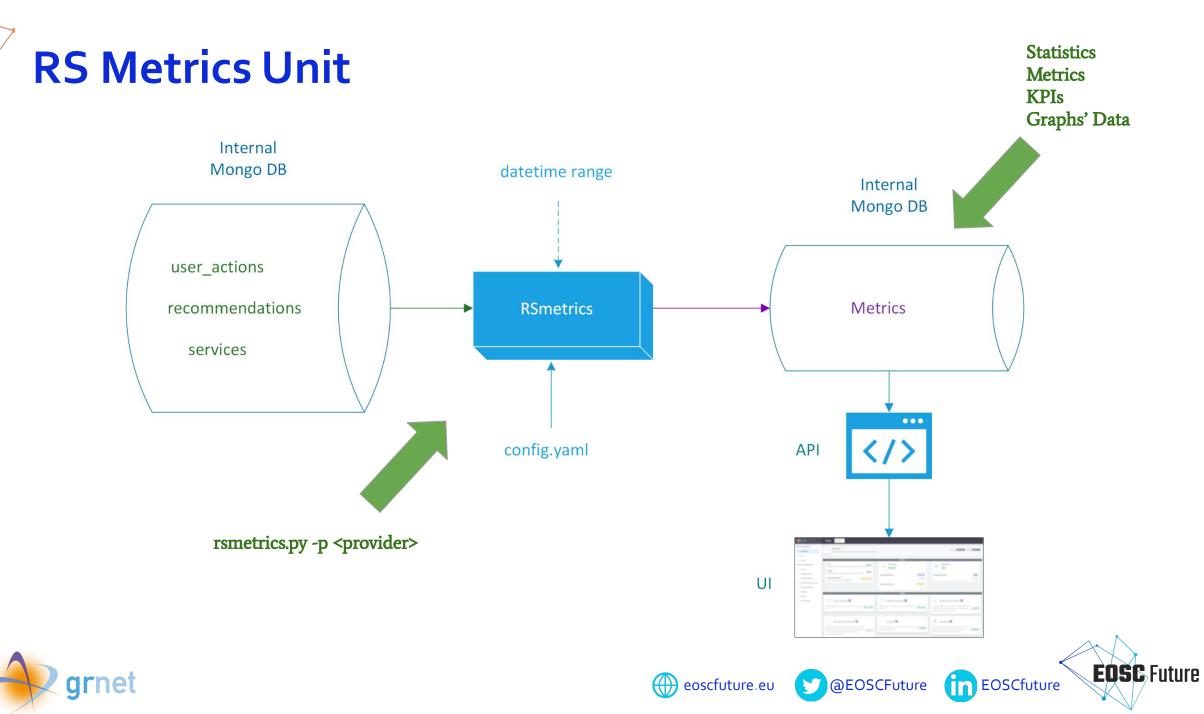


**RS** Metrics Unit



### **RS Metrics Unit**



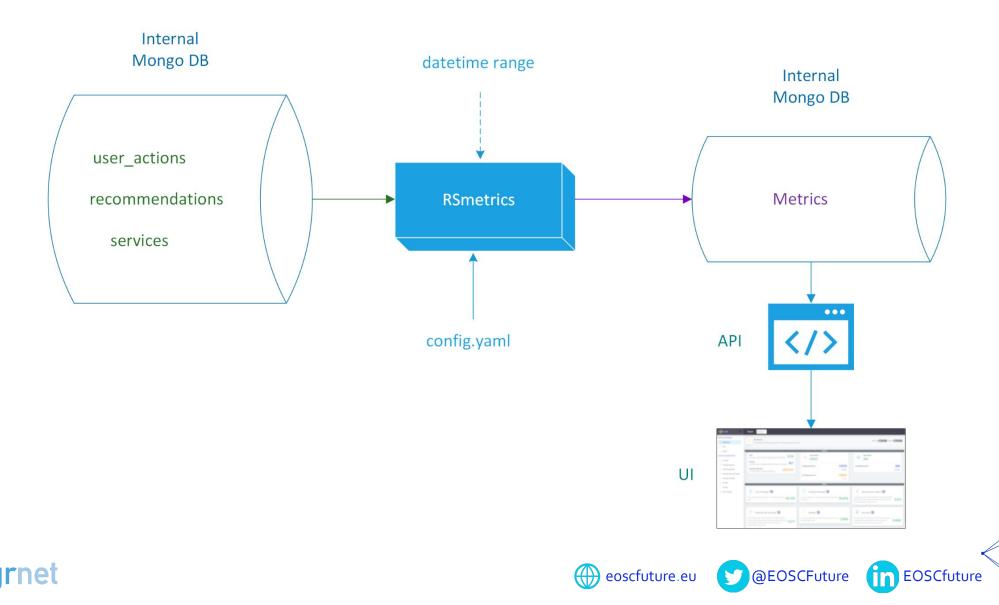




Rest API/ UI Dashboard Unit

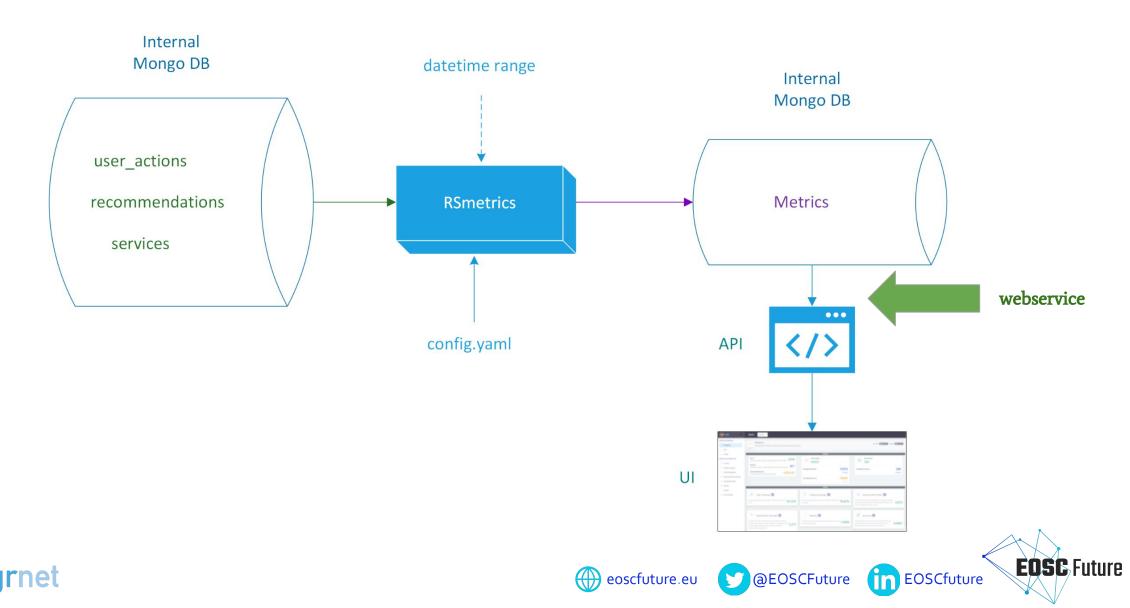


#### **REST API/UI Dashboard Unit**





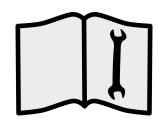
#### **REST API/UI Dashboard Unit**











https://argoeu.github.io/eosc-recommender-metrics/docs





#### **Ready to answer your questions!**















# Thank you for your attention

The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020, Grant Agreement 101017536

